Adaptive Al - A Written Tutorial

Blake Skaja

Table of Contents

Table of Contents

Introduction

Acknowledgements

Resources

Adaptive Al - What is it?

The Game

Advantages of an Adaptive Al
Disadvantages of an Adaptive Al
Core Concepts

Requirements
Computational Requirements

Functional Requirements
Dynamic Scripting
Rulebases
Static Round Evaluation
Weight Adjusting
Turning Point

Simulations
Static vs Static
Unbiased Rulebases
Biased Rulebases

Mutating Al
Conclusion

Skaja - 1

Skaja - 2

Introduction

This document is written with the purpose of teaching how to implement an Adaptive Al in a
video game. We will discuss what an adaptive Al is, why you would want to use one in your
game, the core concepts of this type of Al and finally demonstrate the Al's power in a fighting
simulation game.

Acknowledgements

| would like to give credit to resources in which | was able to gather information on this type of Al
system. As this topic is incredibly theoretical and still in the research infancy stages, the
following resources provided a large amount of information for my tutorial.

Pieter Spronck
http://www.socsci.ru.nl/idak/publications/papers/DynamicScripting.pdf
http://ilk.uvt.nl/~pspronck/pubs/PonsenCGAIDE.pdf

Antiono and Patrick
http://cs229.stanford.edu/proj2008/RicciardiThill-AdaptiveAlForFightingGames.pdf

Resources

The code for this project can be found at the public github repo listed below. Feel free to use the
code as a guideline for implementing your own Adaptive Al system.

https://qithub.com/Skyman12/AdaptiveAl

Adaptive Al - What is it?

An Adaptive Al is an artificial intelligence system that is able to perform online learning to make
better decisions in the future. This type of Al is sometimes referred to as a dynamic Al or an
evolutionary learning system. Regardless of the title, the core concepts are the same. An
adaptive Al works by evaluating its success of specific actions and then adjusting the
computer’s play style accordingly. For example, in a fighting simulation game, attacking specific
targets with specific abilities may lead to better results. By evaluating the success of actions and
then dynamically adjusting the likelihood of using that same ability, we are able to see a
performance increase in our Al's performance.

http://www.socsci.ru.nl/idak/publications/papers/DynamicScripting.pdf
http://ilk.uvt.nl/~pspronck/pubs/PonsenCGAIDE.pdf
http://cs229.stanford.edu/proj2008/RicciardiThill-AdaptiveAIForFightingGames.pdf
https://github.com/Skyman12/AdaptiveAI

Skaja - 3

An adaptive Al can be implemented in any game in which the following criteria is satisfied:
e The game Al has to be able to be implemented via scripts.
e The success of actions have to be both recorded and evaluated for efficiency.

As seen, this criteria is fairly vague and can be applied to a wide variety of games. The most
practical applications exist in turn based games, in which there is a natural time to evaluate the
success of the last rounds.

The Game

In order to implement an adaptive Al for this tutorial, a game had to first be created as a way to
test the Al. While this tutorial is going to focus on how to create an adaptive Al for any game, it
is worthwhile to know how the game that the simulations were run on operates.

The game created is a simple yet sophisticated team fighting simulation. It was designed to be
easy to play and quick to pick up. However, there is enough different strategies in the game to
make a smart Al worthwhile.

Each team is given four players to control. There are six different classes from which a player
can build their team. The classes are Warrior, Rouge, Mage, Warlock, Priest and Bard. Like
most MMO type games, the classes all operate a little differently. The Warrior has more health
and shield, while the Priest can heal and buff teammates.

Each player has a set of characteristics, including health, shield and energy. Each player also
has a set of three basic attacks and a set of four abilities. Both basic attacks and abilities have a
speed associated with them. The basic attacks and abilities with lower speeds are processed
first in the round. Abilities also have energy cost associated with them, while basic attacks are
free. The basic attacks and abilities have functionality ranging from damage, healing, buffing,
stunning, taunting, protecting and confusion.

Skaja -4

Below is an image of the Ul for the game.

150 75

Target ‘ ‘ Target ‘ ‘ Target ‘ ‘ Target ‘

Mage Warrior Warlock Priest

‘ m— ‘

‘ Firchal H e it a H Thunder Strike | ‘ Quick Sissh H Hesvy Siash H Counter ‘ ‘ e Tab H Corruption H Vind Z3p ‘ ‘ Smte H Heal H Gleanse ‘
[Lmine | [roavre |[_rome [_woomme | [_vm [poma |[retwss |[_rr | [Lumomn |[e][commsen][mewars | [_swver [weven. || _voysn.][seinan |
I T R T
"
125 T R

Target ‘ ‘ Target ‘ ‘ Target ‘ ‘ Target

Mage Warrior Warlock Priest

The object of the game is to kill all of your opponent’s players before they kill you. Throughout
the remainder of this tutorial, references will be made to this game as a way of showing how
these principles can be implemented. These adaptive Al concepts, however, can be applied to
any game.

Advantages of an Adaptive Al

The implementation of an adaptive Al system in your game provides a plethora of advantages.
The most obvious advantage is the fact that the Al, if implemented this way, is going to provide
the human player with a much more difficult and challenging experience. The adaptive Al is able
to learn and adjust the computer's playstyle to learn from what the human player is doing. This
helps eliminate the issues that arises when a human player learns a combination of moves that
is always successful. Because the adaptive Al is able to perform online learning, a solution to
the human’s move combination can be discovered and implemented, making the game much
more of a challenge.

Additionally, an adaptive Al helps a developer because it is able to learn and mutate throughout
the course of the playing experience. It can be hard to design and implement an Al that is the
most powerful without going through rigorous testing. Even then, there is a chance that the
human player discovers and uses tactics that even the best programmed Al’s have not been

Skaja-5

scripted to deal with. By using a dynamic scripting system, the game is able to learn what works
best and then build the Al using that knowledge.

Disadvantages of an Adaptive Al

As with all Al systems, there are going to be drawbacks of using a specific methodology. With
the adaptive Al implementations, there are a few limitations that are apparent. The most
daunting of the disadvantages is the fact that an adaptive Al can have a long learning time to
reach the turning point. This means that for a long period of a human player's gaming
experience, the adaptive Al may not be fully competitive.

There is also a fear that the adaptive Al can learn inferior behaviors, which would lead to a less
fun gameplay style. Because our Al system is constantly learning and improving its Al, there is
also reason to believe that the Al could become too good and lead to a frustrating experience
for the user. With all games, the Al needs to be fair, fun and beatable. An adaptive Al, has
potential to become predictable and unbeatable.

There is also a fairly narrow field for application of this Al system. As stated before, this type of
Al can only be implemented in games that rely on scripted actions and actions that can be
immediately evaluated mathematically for their success or failure. This leads to a fairly specific
range of games that this system would truly be effective for. Lastly, as this is a relatively new
style of artificial intelligence, there is limited research and information available on the topic.

Core Concepts

This section will discuss the theoretically components that make up an adaptive Al system.

Requirements

In the research paper “Adaptive Al with Dynamic Scripting” by Pieter Spronck, a series of
requirements, both computational and functional, are defined for the implementation of an
adaptive Al.

Computational Requirements

The four computations requirements for an adaptive Al are as follows:

Speed: The Al must be able to quickly generate static round evaluations, as the learning
process occurs during the game.

Effectiveness: The Al needs to consistently produce reasonably successful behavior.

Skaja - 6

Robustness: The Al needs to be able to deal with the element of randomness that is inherent
in all video games.

Efficiency: The Al needs to quickly reach the turning point, or the point in which the Al is
successful in its actions more often that is is unsuccessful.

Functional Requirements

The four functional requirements for an adaptive Al are as follows:
Clarity: The Al needs to produce results that can be easily interpreted by the developers.

Variety: The Al needs to produce a variety of different actions, as an Al that produces the same
action scripts is not as entertaining as one that has a multitude of actions.

Consistency: The Al needs to consistently reach its turning point in a low number of
encounters.

Scalability: The Al needs to scale the difficulty level of its results to the human player's skill
level.

The requirements provide a template for the bare minimum requirements needed for a
successful adaptive Al.

Dynamic Scripting

Spronck defines dynamic scripting as “an online competitive machine-learning technique for
game Al, that can be characterised as stochastic optimisation.” Online is referring to the fact
that our Al is going to be learning and adjusting during game play. Competitive alludes to the
fact that our Al is going to be able to produce results that will challenge the human player.

Dynamic scripting is made up of several different components. We need each of the characters
in our game to have a rulebase associated with them. After each round, we need a way to
statically evaluate the results of the actions used each turn and adjust those rules in the
rulebase according to the contribution. Below is a visual representation of how dynamic
scripting works, taken from Spronck’s research paper.

Skaja -7

7 vaam controled
by computer

T - d
% - 3
'

¢ lmam cordrolled
i by human playar |

1
sCriphad ' | hurnan
control | . II oaninel
H
1
)
- i
waight updstes ! i
I |
gofiptad | & | fhuman
ScriptB contral ! ' cariial
e—... ..‘-:
H

Figure I. Dynamic scripting.

Rulebases

Rulebases are a large portion of the adaptive Al methodology. Rulebases are defined per
character and give meaning to what actions a certain character can perform. Each rule in the
rulebase has a script component and a weight component. The script details the action that the
rule will perform. For example, in the game that was discussed previously in this document,
each character has two separate rulebases - one for their basic attacks and one for their
abilities. Each rule in the rulebase has a weight value associated with it, which represents the
likelihood of selecting that rule for execution during the next rounds.

Example Rulebase for the Mage Class
Rulebase Name: Basic Attacks

Rule 1: Fireball 25.0
Rule 2: Flame Tunnel 15.0
Rule 3: Thunder Strike 60.0

Rulebase Name: Abilities

Rule 1: Ice Lane 18.0
Rule 2: Tidal Wave 12.0
Rule 3: Freeze 40.5

Rule 4: Meditate 19.5

Skaja - 8

An important part of the rulebase system is the idea that all of the rules’ weights in the rulebase
always add up to a constant number. In this case, that number is 100.0. This means that when
one rule is given an increase to its weight, the rest of the rules in the rulebase must be
decreased to keep the total constant.

Additionally, each rule in the rulebase also has its own rulebase for determining the targets of
the attack. Our game allows us to define attack criteria for how each attack’s target should be

chosen. For example, the Freeze ability for the Mage has this following attack criteria:

Rulebase Name: Freeze Targets

Rule 1: Target Mage 34.5
Rule 2: Target Priest 25.5
Rule 3: Target Bard 15.0
Rule 4: Random Target 25.0

What this is saying is that we want to target the opposing team’s Mage, Priest or Bard the
maijority of the time. Sometimes we want to choose a random target to Freeze. Because this is a
dynamically changing rulebase, if using Freeze on the opposing Mage provides the best results,
the weight of that rule is going to be increased, which will lead to that script being used more in
the future.

Another important component of the rules is the idea of implementing hard and soft caps.

A hard cap is a “can I” use this move statement. This evaluates if the rule in the rulebase can be
used this turn. For example, in the game implemented for this tutorial, each ability has a energy
cost associated with it. Our hard cap checks to see if the energy cost associated with that ability
exceeds the current energy of our player. If so, we know that we cannot use that ability this
round.

public beoolean getHardCap() {
// Check for energy cap - do they have enough ener
if (theAttacker.currentEnergy < cost) {
return false;

o
=

¥

return true;

¥

public boolean getSoftCap() {
return true;

¥

Skaja-9

A soft cap is a “should I” use this move statement. This cap uses a logical approach to see if
this rule should be considered for usage next turn. For example, in our Priest's healing spell, the
soft cap checks to see if any of the Priest’'s teammates have lost more health than the heal spell
will restore. If so, we can add this rule to the possible rules for execution. If no members of the
Priest’s team are injured, we do not want the priest to use that ability this turn.

@Override
public boolean getSoftCap() {

Arraylist<Class> players = getAliveAllies(theAttacker);
players.add(theAttacker);

for (Class p : players) {
if (p.baseHealth - p.currentHealth > 15) {
return true;

return false;

Skaja - 10

Static Round Evaluation

Static round evaluation is the process of mathematically measuring the performance of the rules
used in last round's execution. This is a crucial part of the adaptive Al process, as it is in this
stage that the rules that lead to success are given an increase to their weights and the rules that
lead to failure are given a decrease.

Static round evaluation takes the difference from the previous round to the current round to
measure how the rules performed. Below is an example table that illustrates this process:

Round Team 1 Score Team 2 Score Differential

1 2000 2000 -

2 1600 1700 Team 2 +100

3 1500 1500 Team 1 +100

4 800 1200 Team 2 + 400

5 500 700 Team 1 +200

6 0 200 Game Over -
Team 2 Wins

For example, the initial scores of the teams are the same. A team's score is calculated by
summing the scores for each player on the team. A player receives points for how much health,
shield and energy they have left. A player loses points if they are stunned or confused. The
higher the score for a player, the better that player is doing. A score of 0 means that player is
dead.

After the second round, we compare and see which team performed better. Team 1 has a total
score of 1600, while Team 2 has a score of 1700. This means that Team 2 performed better by
100 points, as the difference from round 1 to round 2 implies that Team 2 did more damage to
Team 1 than Team 1 did to Team 2. This means that all the rules that were used during Team
2’s round 2 execution are given a weight increase, as those rules and the targets of those rules
led to a positive round for Team 2.

Skaja - 11

After the third round, we see that even though the total score is tied, Team 1 performed better
from round 2 to round 3, as they lost only 100 points compared to Team 2’s 200 point loss. This
means that all the rules that were used during Team 2’s round 2 execution are given a weight
decrease, as those rules and the targets of those rules led to a negative round for Team 2.

Weight Adjusting

The weight adjusting occurs right after the static round evaluation takes place. This is the
process of determining how much a rule in a rulebase is going to increase/decrease and making
sure that the rest of the rules in that same rulebase are compensated for to keep our weight
total constant. In the code for our game, the process of doing this can be seen below:

public void processRound() {
makeAIMoves();
orderAttacks();

for (Attacks attack : roundAttacks) {
attack.executeAttack();
attack.theTargets.clear();
checkForGameOver() ;
if (gameOver) {
return;

assignRoundEvaulation();
updateDyanmicWeights();

All of the attacks for the rounds are executed, and the round evaluation is assigned. The
dynamic weights are then updated to reflect the success or failure of the last used rules. We
also assign the rules a slight adjustment that is unrelated to the overall success of the round.
For example, if we used Freeze last turn and that was a successful action, but the round was
still lost, we do not want to penalize this ability for as much as an ability that had no positive

Skaja - 12

effect on the round. This allows us to keep abilities that are performing well but happen to get
paired with unsuccessful performing rules from taking too hard of a weight decrease.

Turning Point

The turning point for an adaptive Al is the point in which the adaptive Al is able to routinely
outperform the human or a static Al. In our game, this is measured when the adaptive Al is able
to first win 10 games in a row. Low turning points for an adaptive Al are important, as the less
games it takes the Al to learn and adapt means less time a human has to play the game before
getting a good challenge.

Simulations

As a way of measuring the power of the adaptive Al, simulations were run against a variety of
different static Al configurations. The results were recorded and some interesting conclusions
were drawn. In all of these simulations, the same team configuration was used. (Mage, Warlock,
Bard and Warrior). This guarantees that the Al's and the Al's alone were the difference between
the teams performance. Each simulation was run 10,000 times, with those results being
recorded. We ran the 10,000 game simulations 100 times and took an average of the results to
account for outlying game simulations in which the turning point could have been found too
early due to random chance (in two equally balanced teams, in which each team has a 50% win
chance, there is a chance that one team could win the first 10 games, simply due to random
odds).

Static vs Static

The first simulation that was run was a Static Al vs another Static Al. This test was run to show
that two teams of the same configuration and the same basic Al should perform equally well
against each other. The results are as follows:

———————— Simulation Complete ------------

Average number of Team 1 Wins over 100 simulations: 4974
Average number of Team 2 Wins over 180 simulations: 4976
Average number of Ties over 180 simulations: 48

What we found is what we expected. Over 100, 10,000 game simulations, we found that on
average, Team 1 won 4,974 / 10,000 times and Team 2 won 4,976 / 10,000 times. The
difference of two games over 10,000 game simulations implies that our game is balanced and if
two identically Al teams compete, they are equally likely to win.

Skaja-13

Unbiased Rulebases

The next simulations introduced our adaptive Al into the game. We seeded our adaptive Al with
an unbiased rulebase. An unbiased rulebase is one that gives each ability an equal chance of
being initially used. For example, an unbiased rulebase for our mage would look like this.

Example Unbiased Rulebase for the Mage Class
Rulebase Name: Basic Attacks

Rule 1: Fireball 33.3
Rule 2: Flame Tunnel 33.3
Rule 3: Thunder Strike 33.3

Rulebase Name: Abilities

Rule 1: Ice Lane 25.0
Rule 2: Tidal Wave 25.0
Rule 3: Freeze 25.0
Rule 4: Meditate 25.0

Additionally, each rule would have an equal chance of choosing their targets.

Rulebase Name: Freeze Target’s

Rule 1: Target Mage 25.0
Rule 2: Target Priest 25.0
Rule 3: Target Bard 25.0
Rule 4: Random Target 25.0

This allows the rules that are the most effective to see their weights rise, while the ineffective
rules will have their weights decrease.

The adaptive Al was simulated against four different static Al templates.

Balanced: Equal chance for choosing a rule and target.

Aggressive: Rules that deal damage are given higher weights.

Defensive: Rules that heal, buff and protect teammates are given higher weights.
CC: Rules that stun, confuse or taunt enemies are given higher weights.

In the simulations, Team 1 represents the static Al, while Team 2 is the adaptive Al. The results
of these simulations are as follows:

Against Balanced Static Al

Average
Average
Average

Average
Average
Average

Average
Average
Average

Simulation Complete

number of Team 1 Wins over 108 simulations:
number of Team 2 Wins over 180 simulations:
number of Ties over 100 simulations: ©
-Turning Point Found------------

turning point over 1@@ simulations: 937

-Before Turning Point

number
number
number

number
number
number

of Team
of Team
of Ties
Turning
of Team
of Team
of Ties

1 Wins over 100 simulations:
2 Wins over 100 simulations:
over 10@ simulations: @

1 Wins over 100 simulations:
2 Wins over 100 simulations:
over 108 simulations: @

Against Aggressive Static Al

Average
Average
Average

Average
Average
Average

Average
Average
Average

Simulation Complete
number of Team 1 Wins over 180 simulations:
number of Team 2 Wins over 100 simulations:

number of Ties over 10@ simulations: @
-Turning Point Found------------
turning point over 186 simulations: 1143

-Before Turning Point
1 Wins over 100 simulations:
2 Wins over 1@ simulations:

number
number
number

number
number
number

of Team
of Team
of Ties
Turning
of Team
of Team
of Ties

over 100 simulations: ©

1 Wins over 100 simulations:
2 Wins over 1@ simulations:

over 180 simulations: ©

Skaja - 14

2684
7394

683

253

1928
7141

2144
7855

771

371

1272
7483

Against Defensive Static Al

Average
Average
Average

Average
Average
Average

Average
Average
Average

Simulation Complete

number of Team 1 Wins over 180 simulations:
number of Team 2 Wins over 100 simulations:

number of Ties over 100 simulations: 4
-Turning Point Found------------

turning point over 100 simulations: 939
-Before Turning Point
number of Team
number of Team
number of Ties
Turning
of Team
of Team

of Ties

over 189 simulations: @
Point-----------------

number
number
number

over 180 simulations: 4

Against CC Static Al

Average
Average
Average

Average
Average
Average

Average
Average
Average

Simulation Complete

number of Team 1 Wins over 1@ simulations:
number of Team 2 Wins over 100 simulations:

number of Ties over 100 simulations: @
-Turning Point Found------------

turning point over 1@ simulations: 617
-Before Turning Point
number of Team
number of Team
number of Ties
Turning
of Team
of Team
of Ties over 108 simulations: @

over 1@ simulations: @

number
number
number

1 Wins over 1080 simulations:
2 Wins over 100 simulations:

1 Wins over 100 simulations:
2 Wins over 180 simulations:

1 Wins over 10@ simulations:
2 Wins over 10@ simulations:

1 Wins over 10@ simulations:
2 Wins over 10@ simulations:

Skaja - 15

4899
5895

781

357

4118
4737

3984
6014

562

254

3421
5760

Skaja - 16

Adaptive Al vs Static Al: Unbiased Rulebase Results

Team Type | Turning | Overall Win Before Turning | After

Point Percentage Point Turning
Point
Balanced 937 73% 27% 78%
Aggressive | 1143 78% 32% 84%
Defensive | 939 51% 31% 53%
CC 617 60% 31% 62%

The results of those simulations are as shown above. Our adaptive Al had a higher overall win
percentage than the static Al, regardless of the static Al's playstyle. Additionally, once the

turning point was found, the win percentage for the adaptive Al could be as high as 84%. All in
all, the adaptive Al, using an unbiased rulebase, was able to outperform all the static Al teams.

Biased Rulebases

Building off of the results from the unbiased rulebase simulations, it was decided to run the
same simulations, this time using a biased rulebase. A biased rulebase is one that is given an
initial template and then allowed to adjust itself from that starting point. Since the defensive
template was the static Al that performed the best in our previous simulations, it was decided to
seed our adaptive Al with that starting template. The same simulations were run, and the results
are as seen below:

Skaja - 17

Against Balanced Static Al

———————— Simulation Complete ------------

Average number of Team 1 Wins over 180 simulations: 3674
Average number of Team 2 Wins over 108 simulations: 6323
Average number of Ties over 180 simulations: 2

————————— Turning Point Found------------

Average turning point over 180 simulations: 586
————————— Before Turning Point ---------------

Average number of Team 1 Wins over 100 simulations: 377
Average number of Team 2 Wins over 108 simulations: 288
Average number of Ties over 188 simulations: @

————————— After Turning Point------ - - - - —-—-—----

Average number of Team 1 Wins over 180 simulations: 3296
Average number of Team 2 Wins over 188 simulations: 6114
Average number of Ties over 180 simulations: 2

Against Aggressive Static Al

———————— Simulation Complete ------------

Average number of Team 1 Wins over 180 simulations: 2891
Average number of Team 2 Wins over 180 simulations: 7164
Average number of Ties over 188 simulations: 4

————————— Turning Point Found------------

Average turning point over 180 simulations: 353
————————— Before Turning Point ---------------

Average number of Team 1 Wins over 180 simulations: 225
Average number of Team 2 Wins over 100 simulations: 127
Average number of Ties over 188 simulations: 8

————————— After Turping Point---- - - - - - - -------

Average number of Team 1 Wins over 180 simulations: 2666
Average number of Team 2 Wins over 180 simulations: 6976
Average number of Ties over 188 simulations: 4

Skaja - 18

Against Defensive Static Al

Average
Average
Average

Average
Average
Average

Average
Average
Average

Simulation Complete
number of Team 1 Wins over 188 simulations:
number of Team 2 Wins over 100 simulations:

number of Ties over 188 simulations: 4
-Turning Point Found------------

turning point over 100 simulations:
-Before Turning Point
1 Wins over 188 simulations:
2 Wins over 100 simulations:

number
number
number

number
number

of Team
of Team
of Ties
Turning
of Team
of Team
of Ties

Against CC Static Al

Average
Average
Average

Average
Average
Average

Average
Average
Average

number
number
number

of Team
of Team
of Ties

-Turning Point
turning point over 100 simulations: 357

-Before Turning Point
1 Wins over 188 simulations:
2 Wins over 180 simulations:

number
number
number

number
number
number

of Team
of Team
of Ties
Turning
of Team
of Team
of Ties

337

over 100 simulations: 8

1 Wins over 188 simulations:
2 Wins over 108 simulations:

over 100 simulations: 4

1 Wins over 188 simulations:
2 Wins over 188 simulations:

over 108 simulations: 1

over 188 simulations: @

1 Wins over 180 simulations:
2 Wins over 180 simulations:

over 108 simulations: 1

4594
5481

245

91

4348
5310

3477
6521

244

112

3232
6488

Skaja - 19

Adaptive Al vs Static Al: Biased Rulebase Results

Team Turning Overall Win Before After

Type Point Percentage Turning Turning
Point Point

Balanced 586 63% 35% 65%

Aggressive | 353 71% 36% 72%

Defensive | 337 54% 27% 67%

CC 357 65% 31% 66%

Comparison of Biased and Unbiased Rulebases

The biased rulebase data is shown in bold.

Team Turning Overall Win | Before After

Type Point Percentage | Turning Turning
Point Point

Balanced 586 --937 | 63%--73% | 35% --27% 65% -- 78%

Aggressive | 353 -- 1143 | T1% -- 78% | 36% -- 32% 72% -- 84%

Defensive | 337 -- 939 54% --51% | 27% --31% 67% -- 53%

CC 357 --617 | 65% --60% | 31% -- 31% 66% -- 61%

Skaja - 20

What we can see from the following data is that using a biased rulebase drastically reduces the
number of games that it takes for the adaptive Al to reach its turning point. This is important, as
the implementation of an adaptive Al is reliant on being able to find that point as fast as
possible. It is also seen that the biased rulebase led to some increases in win percentage, but
also some decreases when compared to the unbiased rulebase adaptive Al. The explanation
we have for this peculiar trend is that using a biased rulebase forces some less inferior rules to
have their weights rise. For example, say that the Mage is the most successful when using
Freeze on the enemy’s Priest. However, the Mage is also successful when using Tidal Wave on
the entire team, just not as successful as when it uses Freeze. Because our biased rulebase
forces the initial weights of some rules to be increased, it is possible that we are going to find a
set of winning rules that although produce winning results, are not the ideal way to win. This
leads to winning faster, which is evident by the lower turning point, but not winning at nearly as
high of a rate after that turning point is found.

Mutating Al

The last simulation run was the biased rulebase adaptive Al vs a Mutating Al, which is set to
resemble how a human would play. Most gaming players will use a strategy as long as that
strategy produces winning results. Once that strategy loses, a player will often switch and try a
new tactic. This is the same as our mutating static Al. The mutating static Al will use a weight
template until it loses, in which it will then randomly choose one of the four weight templates and
use that one until it loses. The results of the mutating Al simulation are found below:

———————— Simulation Complete ------------

Average number of Team 1 Wins over 180 simulations: 3258
Average number of Team 2 Wins over 100 simulations: 6746
Average number of Ties over 188 simulations: 2

————————— Turning Point Found------------

Average turning point over 100 simulations: 466
————————— Before Turning Point --- - - - -———------

Average number of Team 1 Wins over 108 simulations: 342
Average number of Team 2 Wins over 100 simulations: 123
Average number of Ties over 188 simulations: ©

————————— After Turning Point-----------------

Average number of Team 1 Wins over 180 simulations: 2988
Average number of Team 2 Wins over 108 simulations: 6622
Average number of Ties over 1060 simulations: 2

Skaja - 21

What we see it that we still get very good results, even against a mutating static Al. Our turning
point was slightly higher than the previous simulations, which is to be expected. However, this
simulation proves that the adaptive Al is viable against a human's playstyle. The game
implementation that was created provides a way for saving this data for human use. After every
game, the data is written to a .txt file, in which the weights of the abilities can be reloaded the
next time the human plays the game.

] Warlock_Lif... 1] Warlock_Min.. 1] Warrior_Heav... 1] Warrior_Quic... [ability_wei.. 2 [J] GameSimulat... [J] GameSimul

22Mage : Ice Lance -- 15.@

23 Mage : Tidal Wave -- 15.8
24 Mage : Freeze -- 58.0
25Mage : Meditate -- 20.8
26Mage : Fireball -- 33.8
27Mage : Flame Tunnel -- 33.9
28Mage : Thunder Strike -- 34.0
29Bard : Charm -- 15.8
30Bard : Cleanse -- 15.8
31Bard : Buff Auora -- 68.8
22Bard : Mass Confusion -- 18.8
Z3Bard : Power Cord -- 18.8
34Bard : Shield Boost -- 45.8
25Bard : Energy Boost -- 45.9
36Rogue : Stun -- 25.9

37 Rogue : Backstab -- 25.8
38Rogue : Sneak -- 25.8
39Rogue : Flury -- 25.8

48 Rogue : Stab -- 33.0

41 Rogue : Triple Stab -- 33.0
42 Rogue : Counter -- 34.0

Conclusion

This tutorial has hopefully allowed you to understand the basics of what adaptive Al is and how
you would go about implementing a system yourself. All in all, adaptive Al is a neat concept at
best. It provided promising results during the simulations and is relatively simple to implement.
However, the long learning time (408 games with a biased rulebase), makes this
implementation not practical for an actual game. Not only was the turning point much too high,
but the abilities that were the most effective would often rise to have a weight of near 99%,
making the game boring and no fun to play. This system would be great for testing and finding
rules in the rulebase that are overpowered and unbalanced. Unless the game is truly balanced,
the adaptive Al is going to naturally percolate some of the rules in the rulebase to a weight of
99, which makes sense as the Al wants to produce successful rounds.

I hope that you have learned and enjoyed this tutorial.

Questions, comments or concerns, please contact:
Blake Skaja - bskaja@iastate.edu

